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Abstract
It is demonstrated that all observed fractions at moderate Landau level fillings for the quantum
Hall effect can be obtained without recourse to the phenomenological concept of composite
fermions. The necessary additional flux is supplied by the vortex lattice, which allows us to
consider all fractions in a unified frame. The group classification predicts the electron density of
the ground state and the existence of a gap that separates it from excited states. This gap was
calculated for some lattices in a simplified model.

The experimental discoveries of the integer quantum Hall
effect (IQHE) by K von Klitzing (1980) and the fractional
quantum Hall effect (FQHE) by Tsui, Stormer and Gossard
(1982) were among the most outstanding achievements in
condensed matter physics in the last century.

A qualitative theory of the IQHE can be derived for non-
interacting electrons filling the lowest LL separated by an
energy gap from the excited states in the presence of impurities
(see reviews [1, 2]). But the FQHE with fractional LL fillings
cannot be explained within the one-electron framework due
to the macroscopic degeneracy of the LL, in contrast to the
IQHE case. Various methods were used to overcome this
difficulty. Laughlin proposed his famous variational many-
electron wavefunction to explain the 1/3 and other odd inverse
fillings [3, 4]. The explanation of other observed fractions
was obtained using various phenomenological hierarchical
schemes, with the construction of ‘daughter’ states from the
basic ones (Haldane 1983, Laughlin 1984, Halperin 1984).

In those works, the approximation of an extremely high
magnetic field was used and all states were constructed from
the states of the lowest Landau level. However, this does
not conform to the experimental situation where the cyclotron
energy is of the order of the mean energy of electron–
electron interaction. Therefore, these theories are inevitably
qualitative by nature. Moreover, this approach encounters
difficulties when generalized to other fractions. Computer
simulations also give a rather crude approximation of the
realistic multiparticle functions since the number of particles
in the corresponding computations on modern computers does
not exceed several dozen.

The most successful phenomenological description is
given by Jain’s model of ‘composite’ fermions [5, 6], which

predicts the majority of observed fractions. According to this
model, electrons are dressed with magnetic flux quanta with
the magnetic field concentrated in an infinitely narrow region
in the vicinity of each electron. It is assumed that having
an even number of flux quanta ensures that these particles
are fermions. The inclusion of this additional magnetic field
into the formalized theory leads to the so-called Chern–Simons
Hamiltonian. This approach is described in detail in [7].

However, this theory gives an artificial six-fermion
interaction whereas the actual calculations use the crude
approximation of the constant ‘effective’ magnetic field as
the sum of the external magnetic field and some additional
artificial field that provides the total magnetic flux dictated by
Jain’s model of composite fermions. An additional difficulty
in the calculations arises due to the fact that the effective
electron mass (entering the expression for the energy gaps) is
not known.

In the present work we show how to remove some
restrictions of the Jain–Chern–Simons model related to the
fillings outside Jain’s series; we also derive the means to
calculate the gap, i.e. to determine the ‘effective’ mass.
The model used also does not change the nature of the
standard interaction of electrons. The main concept is based
on the topological classification of quantum states. There
are quite a number of topological structures in condensed
matter physics: vortex lattices in a rotating superfluid,
Abrikosov vortices in superconductors, skyrmions in 2D
electron systems at the lowest LL filling. It is difficult
to give an exact topological classification of multiparticle
wavefunctions for various physical systems. Probably the
most simple and general definition can be obtained by using
canonical transformation of the field operators of the second
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quantization. A canonical transformation of the field operators
is one that leaves the commutation relations intact. The Jain–
Chern–Simons Hamiltonian with a modified e–e interaction
was obtained via a rather complicated nonlinear canonical
transformation [7]. The use of canonical transformations in
condensed matter physics goes back to Bogolyubov’s works
on superfluidity (1947) and superconductivity (1957).

In analogy to the work [7], we consider the simplest
case of the fermion canonical transformation not involving
spin degrees of freedom and assume full polarization of 2D
electrons:

ψ(r) = eiα(r)χ, (1)

ψ+(r) = χ+e−iα(r), (2)

with α(r) having vortex-like singularities. It is evident that χ
and χ+ satisfy fermionic commutation relations if ψ and ψ+
do. Inserting these expressions into the standard Hamiltonian
for interacting electrons (spin indices omitted)

H = h̄2

2m

∫
ψ+

(
−i∇ − e

ch̄
A

)2

ψ d2r

+
∫

U(r − r′)
2

ψ+(r)ψ+(r′)ψ(r′)ψ(r) d2r d2r ′, (3)

we get a new Hamiltonian

H = h̄2

2m

∫
χ+

(
−i∇ + ∇α − e

ch̄
A

)2

χ d2r

+
∫

U(|r − r′|)
2

χ+(r)χ+(r′)χ(r′)χ(r) d2r d2r ′, (4)

where U(r) is the Coulomb interaction. We want to consider
a set of periodic vortex-like singularities in ∇α. Vector ∇α
can be expressed in terms of the Weierstrass zeta function used
in the theory of rotating superfluids [8]; it is given by the
converging series

ζ = 1

z
+

∑
Tnn′ �=0

(
1

z − Tnn′
+ 1

Tnn′
+ z

T 2
nn′

)
, (5)

where z = x + iy is a complex coordinate in the 2D plane,
Tnn′ = nτ+n′τ ′ and τ , τ ′ are the minimal complex periods [9]
of the vortex lattice. The phase factor eiα will be a simple
function in the 2D plane if ∇α = K (Re ζ, Im ζ ) and

α(r) = K
∫ r

r0

(Re ζ dx + Im ζ dy), (6)

with integer K of any sign. The quantity K and
the periods τ , τ ′ define the topological class of the
multiparticle wavefunction. The transformed Hamiltonian (4)
has singularities at vortex positions and cannot be restored
to the initial form (3) by any smooth finite transformation of
the function α. That makes it topologically stable. We shall
investigate the peculiarities of the ground state and excitations
in this model at low temperatures.

1. The energy gain due to vortex formation

In this section we show that any state without a macroscopic
current is unstable in an external magnetic field due to the
lowering of the free energy after the formation of an isolated
vortex. The change of the free energy of a charged system in a
given external magnetic field is (see, e.g., [14])

δF = −1

c

∫
Aδj dV

where A is the external vector potential, δj is the change in the
current and the integration is over the volume of the sample.
That is also true for 2DES where the external magnetic field
cannot be essentially modified by a weak 2D current. This
equation can be integrated to give

F = E − 1

c

∫
Aj d2r (7)

where E is the internal energy. The difference between the
internal energy and the free energy is essential and implies the
existence of vortices decreasing the free energy.

A standard assumption in the theory of 2DES in a strong
magnetic field was the possibility of constructing the ground
state by projection on the states in the lowest LL (e.g., [15]). In
that case the average electron current vanishes at distances of
the order of the magnetic length.

It is possible to calculate the change in free energy (7) due
to the formation of an isolated vortex. It is convenient to use
the axial gauge where the external vector potential is

A(r) = 1
2r Beφ

with eφ being the unit vector in the azimuthal direction. The
effective vector potential is the sum of the external vector
potential and the additional vector potential of the vortex

δA = ch̄

e

K

r
eφ.

This variation of the effective vector potential corresponds to
the phase α in the canonical transformation (1) with ∇α =
K/reφ which is the change due to the formation of the vortex
at the origin. The corresponding electric current operator reads

ĵ = h̄e

2MlB

{
ψ+

(
− i∂

ρ∂φ
+ ρ

2
eφ − K

ρ
eφ

)
ψ

+
(

i∂

ρ∂φ
ψ+ + ρ

2
eφψ+ − K

ρ
eφψ+

)
ψ

}
, (8)

where ρ = r/ lB . We shall measure all energies in units of
h̄2/(2Ml2

B).
We assume the lowest LL to be partially filled; the

projected form of the Fermi operators is

ψ =
∑

m

exp(−imφ)Rm(ρ)cm, (9)

ψ+ =
∑

m

exp(imφ)Rm(ρ)c
+
m , (10)

2
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where cm , c+
m are Fermi operators and

Rm(ρ) = ρm exp(−ρ2/4)N−1/2
m ,

with Nm = 2ml2(m+1)
B m!. It is easy to show that the total

azimuthal current through any ray φ = const vanishes at
δA = 0. The change of the second term with the magnetic
moment in equation (7) reads

δF2 = 2π
∫ R

0
ρ dρ

[
ρ

∑
m>0

R2
m

(
− K

ρ

)
〈c+

m cm〉
]
.

The angular brackets denote the quantum mechanical average
over the assumed uniform projected ground state.

We consider large distances from the position of the vortex
where the perturbation of the basic state is small and this
expression can be calculated in the first order as the average
over the supposed projected ground state. Thus the change δF2

due to vortex formation is proportional to the sample area

δF2 = −K
∫ R

0
ne2πr dr, (11)

where ne is the average electron density and the integral gives
the total number of electrons in the sample. It is essential that
the main contribution comes from large distances where the
states are distorted quite weakly and the interaction and the
microscopical structure are not changed.

The calculation of the internal energy can be done in a
similar manner. The change of the internal energy due to vortex
formation is given by the kinetic energy term which reads

E ′ =
∫ R

0

2K

ρ

∑
m>0

(
ρ

2
− m

ρ

)
R2

m〈c+
m cm〉2πr dr

+
∫ R

0

K 2

ρ2

∑
m>0

R2
m〈c+

m cm〉2πr dr. (12)

To the same order of perturbation theory this expression
has a logarithmic dependence on the sample size because the
first term vanishes. The finite value of E ′ is obtained by making
a cut-off in the vortex core at small distances where the electron
density must be reduced.

Thus, vortex formation gives a gain in the energy of large
enough samples when the negative magnetic moment term in
the free energy exceeds the logarithmic increase of the internal
energy in equation (7). We see that the supposed ground state
projected on the lowest LL is unstable with respect to vortex
formation. This statement is independent of the microscopic
structure and of the interaction; it is valid only due to the
different sample size dependences of the internal energy and
the magnetic moment term of the 2DES in close analogy to the
case of the rotating liquid [12].

The regularization is essential to obtain this result. There
are two possibilities for regularization known from the theory
of superfluid 3He [16]. The simplest are singular vortices
with hard cores defined by the Coulomb interaction and
the atomic structure of the underlying semiconductor of the
heterostructure. That gives an estimate of the order of the Bohr
radius for the core size. The other possibility is a soft core

with the size defined by the extension of the electron phase
space like in the Skyrmion texture [17]. That gives a core
of the order of the magnetic length. This case is much more
complicated and we restrict our consideration to lattices of hard
core vortices.

2. Magnetic translations

We assume the existence of vortex lattices that decrease the
free energy according to section 1. Having in mind large
magnetic fields, it is interesting to consider a simplified version
of the Hamiltonian (4) without the interaction term

H ′ = h̄2

2m

∫
χ+

[
−i∇ + ∇α − e

ch̄
A(r)

]2

χ d2r. (13)

This Hamiltonian has properties close to those of a
Hamiltonian with a constant magnetic field. Indeed, the
translation by any period �τ of the vortex lattice gives an
additional constant in the brackets:

r → r + �τ , (14)[
−i∇ + ∇α − e

ch̄
A(r)

]

→
[
−i∇ + ∇α − e

ch̄
A(r)+ �δ(�τ )− e

ch̄
A(�τ )

]
, (15)

due to the properties of Weierstrass function, ζ(z + τ ) =
ζ(z) + δ(τ ), and the linear dependence of the external vector
potential A(r) at constant magnetic field. The additional
constant terms can be removed by a gauge transformation of
the field operators χ , χ+. Thus the proper magnetic translation
does not change the Hamiltonian (13) and the interaction term
in the full Hamiltonian (4).

If we introduce the ‘effective’ vector potential Aeff = A −
ch̄
e ∇α, the magnetic translation is given by the transformation

Tm(�τ)χ(r) = χ(r + �τ ) exp

(
ie

ch̄
Aeff(�τ )r

)
, (16)

for any real period of the vortex lattice.
It is easy to associate Aeff(�τ ) with the ‘effective’ magnetic

flux through the unit cell of the vortex lattice given by a contour
integral along its boundary

� =
∮

Aeff dr = B �τ1 × �τ2 + K�0 (17)

where �0 = 2π e
ch̄ is the flux quantum, and B is the external

magnetic field.
As was shown by Brown [10] and Zak [11] (see also [12]),

a simple finite-dimensional representation of the ray group
of magnetic translations can be obtained only for a rational
number of flux quanta per unit cell,

� = l

N
�0 = Bs + K�0, (18)

where s is the area of a unit cell of the vortex lattice, l and N
are coprime integers.

3
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Thus the situation for vortex lattices is isomorphic to the
case of a superposition of a uniform magnetic field with a
rational number of flux quanta per unit cell and a periodic
magnetic field with zero flux. It is therefore possible to
use all the argumentation of the paper [10] and construct a
finite-dimensional representation of the ray group of magnetic
translations. In order to construct the representation one must
impose certain boundary conditions on the solutions of the
Schrödinger equation with the Hamiltonian (13). The simplest
is magnetic periodicity,

Tm(L) χ(r) = χ(r), (19)

where L = L1,L2 defines the size of the sample, and L1 =
N M1 �τ1, L2 = N M2 �τ2 with integer M1, M2. It is easy to show
that any function χ magnetically translated according to (16)
will also satisfy (19). The simplest realization is the vortex
lattice consisting of exactly N × N unit cells.

These conditions are the analogues of Born–von Karman
conditions in the absence of a magnetic field. Indeed, in a
large enough system the density of states practically does not
depend on the exact form of the boundary conditions. But the
restriction to finite representations is important.

The matrices of the group representation depend on the
choice of the gauge. We choose the total effective vector
potential to have Aeff,y = 0 and assume Aeff,x �= 0; the basic
periods of the vortex lattice are �τ1 = (τx, 0) and �τ2. We
shall use this gauge and the coordinate frame in the rest of the
paper. The states of the crystal with N M1 × N M2 unit cells
of the vortex lattice can be labelled with the quasi-momentum
q = q1b1 + q2b2 where b1,b2 are the base vectors of the
reciprocal vortex lattice.

The representation of the magnetic translation group is
given by the matrices [10]

Dq(�τ j) ≡ exp(−iq jτ j)D(�τ j ), (20)

where

D jk(0) = δ jk, D jk(�τ1) = δ jk exp i( j − 1)
l

N
,

D j,k(�τ2) = δ j,k−1 (modN) ( j, k = 1, 2, . . . , N),

(21)

and the general matrix of the representation is

D jk(n1 �τ1 + n2 �τ2)

= exp

{
iπ

ln1

N
[n2 + 2( j − 1)]δ j,k−n2

}
(mod N). (22)

In general, every vector q corresponds to some irreducible
representation of the translation group. The spacing between
different vectors q is given by the crystal dimensions δq j =
1/N M j and the domain of q is defined by the Brillouin zone
for the given periodic part of the effective magnetic field. For
the same gauge with Aeff,y = 0 the domain for q1 will not
change after adding a constant effective magnetic field with
a nonzero flux. Therefore there are M1 N possible values of
the q1 parameter. But the domain for q2 is reduced if one
introduces a new unit cell extended in the �τ2 direction with
A2 = N �τ2 in order to have an integer number of flux quanta

per cell. The reduced q2 domain is 1/N times smaller than in
the basic reciprocal lattice. The total number of possible values
of q for the irreducible representations in the reduced Brillouin
zone will be M1 M2 N . This number must be multiplied by
N due to the dimensionality of the representation, giving
M1 M2 N2 various states equal to the number of states in
the primary Brillouin zone without a constant magnetic
field. This calculation is in close analogy with the case
of a zero-flux periodic magnetic field where the irreducible
representations are Abelian one-dimensional representations of
the translation group instead of the previously discussed N-
dimensional irreducible representations. Since vectors q are
quasi-continuous inside the reduced Brillouin zone, there are
no energetic gaps within this set of states. If one takes only a
part of this set, there will be no energy gaps separating it from
the empty states. We suggest that the set of M1 M2 N2 states is
separated by some gap from a similar set with higher energies
as it was for the case of a zero-flux periodic magnetic field.
This must be checked numerically.

At large magnetic fields the Hamiltonian (13) will be
dominating the full Hamiltonian (4) since it depends linearly
on the magnetic field while the interaction term is proportional
to the square root of it. In this case the energy of the ground
state (with interaction taken into account) can be obtained
through perturbation theory:

E0 = E ′
0 + 1

2

∫
Uc(|r − r′|)

× 〈χ+(r)χ+(r′)χ(r′)χ(r)〉 d2r d2r ′, (23)

where E ′
0 is the energy of the lowest set of the states giving

the irreducible representations and the angle brackets denote
the average over the Slater determinant of the wavefunctions
of the set (a fully filled ground state of the Hamiltonian (13)).
The energy gap separating the ground state from the next set
of states with higher energies at large magnetic fields must
be proportional to the value of the external magnetic field.
In the experiments [13], a linear dependence of the jump of
the electron chemical potential in a strong magnetic field was
observed for the fractions 1/3 and 2/3. The expression for
the gap must be obtained by a numerical calculation of Bloch
functions for a given representation and is dependent on K , N ,
l and the periods τi .

One can see that in the vortex lattice model the gap
does not depend exclusively on the interaction term as was
suggested in most of the theoretical works based on degeneracy
of the ground Landau level. Quite the opposite: it is almost
independent of the interaction in strong magnetic fields. The
resolution of this paradox is the same as in the case of a
rotating superfluid. The origin of the observed vortex lattices
in a rotating superfluid is connected with the thermodynamic
energy in the rotating frame E ′ = E − ΩM, where Ω is
the angular velocity and M is the angular momentum of the
superfluid. That forces the superfluid velocity to be equal to
the velocity of the solid body rotation, and the vortex lattice is
a good approximation for a superfluid. In fact it is due to the
different dependence of the energy on the size of the system
giving preference to the solid body rotation irrespective of
the microscopic internal structure of the superfluid. Section 1
confirms this analogy.

4
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Table 1. K = −2, l = 1.

N 1 2 3 −5 −2 −3 −4 4 ∞
ν 1

3
2
5

3
7

5
9

2
3

3
5

4
7

4
9

1
2

Table 2. K = −1, l = 1.

N −4 4 2
ν 4

3
4
5

2
3

Table 3. K = −1, l = 2.

N −7 −5 5 2
ν 7

5
5
3

5
7

1
2

The group analysis above valid for a rational number of
flux quanta shows that the energy gaps are opened at special
electron densities corresponding to one electron per unit cell of
the vortex lattice. According to equation (18), that gives the
electron density

ne = B

�0

N

l − N K
(24)

and must correspond to a filled set of bands obtained from S
s

states at zero average magnetic field. Here S is the sample
area. A simple analysis [12] shows that this initial band is
split into q subbands, each being q-fold (odd q) or q/2-fold
(even q) degenerate, with the fraction of the number of states
in each subband being equal to 1/q2 (odd q) or to 2/q2 (even
q). However, the total number of states in all subbands is S/s.
One can assume that these states are separated from the higher
energy states by a gap also for the interacting electrons. Note
that the fact of K being an even number is immaterial since
the Fermi commutation rules for the operators χ and χ+ are
fulfilled automatically and have no relation to the topological
number K unlike in the Jain–Chern–Simons theory. The
occurrence of any specific number of vortex flux quanta can be
dictated by the ground-state energy. Indeed, the experimental
electron density is defined by the gate voltage or the density
of the compensating charge but the observation of the specific
Hall plateau can be dictated by the value of the gap at the given
temperature and the purity of the sample.

The observed fractions in the FQHE correspond to those
of tables 1, 2 and 3.

These fractions correspond to the celebrated Jain rule [6].
Half-filling of the Landau level ne = B

2φ0
in the external field

corresponds to a vanishingly small effective magnetic field (no
flux quanta per unit cell).

The last two tables give the experimentally observed
fractions that lie outside the Jain series. Some fractions occur
more than once.

3. The half-filled Landau level

The considerations of section 1 show that vortices with the
winding number K = −1 are thermodynamically favourable.
The limiting case of a half-filled LL can be obtained either from
the larger densities when N → (−∞) or from the smaller
densities when N → (+∞). The unit cell of the vortex lattice

Figure 1. The vortex lattice at half-filling of the LL.

contains two vortices with K = −1 exactly compensating the
flux of the external magnetic field. The effective magnetic field
is periodic with zero flux and it is possible to use the gauge
with the effective vector potential also periodic. We suppose
that the vortex lattice has the form of two parallel triangular
lattices for each of the vortices in the unit cell displaced by the
distance �τ ′ = (�τ1 + �τ2)/3 as shown in figure 1. The Bravais
lattice corresponds to the positions of one vortex in the unit
cell. The positions of the other vortices are shown by crosses.

Since the total flux is zero, one has an Abelian translation
group and the electron states can be classified by their quasi-
momentum. The ground state must correspond to the filling
of the lowest band. The Brillouin zone for the triangle lattice
has the form of a hexagon with primitive vectors of the inverse
lattice being

b1 = 2π

s
(�τ2 × ẑ), (25)

b2 = 2π

s
(ẑ × �τ1), (26)

where s is the area of the unit cell of the vortex lattice. There
are two nonequivalent vectors in the Brillouin zone, q1 =
(qx, 0) and the vector obtained from this one by a rotation by
2π
6 , where q1 = b√

3
, as shown in figure 2. The space group

is isomorphic to the space group of a honeycomb 2D crystal
like graphene, but the Hamiltonian corresponds to the periodic
vector potential instead of the periodic potential:

H ′ = (h̄)2

2Me

∫
ψ+

[
−i∇ − e

c
Aeff(r)

]2
ψ d2r. (27)

The star for q1 consists of two rays q1, q2. A small
representation of the space group corresponds to the rotations
by ± 2π

3 giving two equivalent vectors q1+bi and the reflection
y → −y leaving q1 invariant and yielding the same lattice
after a nontrivial translation that moves the crosses to points in
the Bravais lattice: (ry |τ ′). We use the standard notation [18]
for the elements of the space group: ry is a reflection, τry

is the corresponding translation. The representation of the
space group can be obtained as some ray representation of the
small group leaving qi and the equivalent vectors invariant (see,
e.g., [18]) with the matrices of the representation obeying the
multiplication law

D(r1)D(r2) = ω(r1, r2)D(r1r2).

5
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b2

b1

q2

q1

Figure 2. The reciprocal lattice and Brillouin zone at half-filling of
the LL.

The representation coincides with the known representation for
graphene, where a two-dimensional representation occurs at
the points q1, q2 of the Brillouin zone.

We therefore have no Fermi surface, as is suggested by
the CF theory, but two Fermi points at the electron density
corresponding to half-filling of the LL. This result corresponds
to the symmetry between the electrons and the holes. That
means the absence of an energy gap and a conic Dirac spectrum

εi = ε0 + |q − qi|vF,

in the vicinity of these points with vF ∼ (h̄)/(lB Me). The
quantity ε0 gives the electron chemical potential at half-filling.

The absence of the gap can also explain the interaction of
2D electrons with acoustic phonons, which allows us to explain
the attenuation of surface waves in SAW experiments [19], like
what was done in Jain–Chern–Simons theory [7].

4. The numerical calculation of the gaps

As was shown in section 2, irreducible representations of
the magnetic translation group for any vortex lattice with a
rational number of flux quanta are given by equation (20) with
any q from the reduced Brillouin zone for a specific gauge
Aeff,y = 0. The representations with different q are different.
According to the general theorems [18], this means that the
states corresponding to different representations are mutually
orthogonal. The dimensionality of the representation gives N
degenerate states which are also orthogonal, since the matrices
of the representation are unitary. In order to perform numerical
computations it is possible to use only one basic function of the
representation (20).

The translation group is a subgroup of the space group of
a 2D vortex lattice. The procedure for finding the irreducible
representations of the space group is well known for an

ordinary crystal with zero magnetic flux per unit cell. It can
be generalized to the case of a rational number of flux quanta.
For the simplest symmorphic case the space group is given by
the product of the translation subgroup and the subgroup of
the point symmetry of rotations and reflections. This gives the
possibility of having some additional degeneracy due to the
subgroup of the point symmetry at the specific values of the
wavevector q. For the non-symmorphic space group, there is a
possibility of having representations of higher dimensionality
than N at some specific values of q. This additional degeneracy
emerges if the translation subgroup does not commute with
all elements of the space group at these specific values of
q. For nonspecific values of q the situation is the same as
in the symmorphic case and one has a set of q with N-fold-
degenerate states. We assume the symmorphic case in our
computations.

Using the known irreducible representation of the
translation group in the presence of the magnetic field with
a rational flux (20), one can form the simplest partner
function [10]

f q
0 = 1

N

∑
n1,n2

exp(iq1n1 �τ1) exp(iq2n2 N �τ2)

× Tm(n1 �τ1)Tm(n2 N �τ2)g(r). (28)

where the vectors in the reduced Brillouin zone are

q1 = r1

N M1
b1, r1 = 0, . . . , N M1 − 1

q2 = r2

M2
b2, r2 = 0, . . . ,M2 − 1

and the summation is over 0 � n1 < N M1 , 0 � n2 < M2.
The other N − 1 partner functions are given by the action of
the other translations:

f q
m′ = exp(−im ′q2 �τ2)Tm(−m ′ �τ2) f q

0 (r) (29)

for m ′ = 1, . . . , N − 1. These functions have the same energy
and are not essential for the calculation of the energy ε(q). It is
possible to calculate this energy by minimization of the mean
value of the Hamiltonian (13) over the partner function (28)
by specifying the unknown function g(r). That is the standard
way to use the group symmetry of the Hamiltonian. However,
in this work we used a more universal and powerful method
developed in [20] to obtain all eigenfunctions and eigenvalues
of the representation. This method is suitable for any shape of
the periodic magnetic field.

We used the regularization of the periodic part of the
‘effective’ vector potential A′

eff,x(r) by Fourier truncation
of the corresponding periodic magnetic field, representing
the proper delta function by a finite sum δ(r) ≈∑P

px =0

∑P
py=0 cos 2πpx x

L cos 2πpy y
L where P = 10 and L is the

size of the unit cell of the vortex lattice.
It is rather onerous to perform the analysis for various

vortex lattices with the same l/N flux quanta per unit
cell. Instead, we have tried several specific lattices and
calculated the energies for the ground band and the next
by an effective numerical method and checked the existence
or the absence of an energy gap between them. In these
calculations we considered only the simplified model with the

6
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Table 4. Energy gaps.

Lattice l K N ν ε1 min ε1 max ε2 min ε2 max �

S 1 −2 1 1/3 0.263 0.353 0.444 0.491 0.0909
S 1 −2 2 2/5 0.269 0.293 0.392 0.405 0.0986
S 1 −2 3 3/7 0.265 0.269 0.337 0.363 0.0677
S 1 −2 −2 2/3 0.274 0.337 0.490 0.720 0.153
S 1 −1 2 2/3 0.245 0.277 0.525 0.594 0.248
T 1 −2 1 1/3 0.249 0.305 0.434 0.580 0.128
T 1 −2 2 2/5 0.227 0.234 0.360 0.384 0.125
T 1 −2 −2 2/3 0.278 0.373 0.411 0.657 0.037

Hamiltonian (13), neglecting the interaction term. We used a
particular gauge where Aeff,y = 0 and the vortex lattice has
periods �τ1 = (τ1,x , τ1,y = 0) and τ2 = (τ2,x, τ2,y). The
Schrödinger equation corresponding to Hamiltonian (13) has
the form

(
1
2 (−i∂x + y + A′

x)
2 + 1

2 (−i∂y)
2
)
ψ = εψ, (30)

where A′ is the periodic part of the effective vector potential
with zero flux, and its periods satisfy the relation |�τ1 × �τ2| =
|2πl/N |. Here the distances are measured in units of magnetic
length for the constant effective magnetic field B0 = l

l−N K B
and the energy is measured in units of the corresponding
cyclotron energy ω0

c = ωc(B)| l
l−N K |. The solution ψ of the

equation (30) must satisfy magnetic periodic conditions (19) at
the boundaries of the sample. The preliminary results of the
numerical calculations are given by table 4, where by K we
denote the number of flux quanta carried by a single vortex.
Square (S) or triangular (T) lattices correspond to the structure
formed by vortices. Energies are given in units of h̄eB/mc,
where B is the external uniform magnetic field. We write εmin,i ,
εmax,i for the minimal and the maximal values of the energy
ε(q) in two lowest bands i = 1, 2, while � is the energy gap.

As an example, in figure 3 we show the electron dispersion
law for l = 1, K = −1, N = 2.

5. Conclusion

We have reproduced the key statement of the Jain’s theory of
composite fermions and obtained the explanation of practically
all observed fractions at moderate Landau level fillings in a
unified framework without any hierarchical schemes. The
preliminary results were published in [21, 22]. The numerical
calculations clearly show the presence of the energy gaps
at experimentally observed FQHE electron densities. Our
description of the states for 2DES for FQHE conditions is
a kind of a mean field approximation or, more exactly, a
method using a self-consistent effective vector potential. We
did not consider fluctuations of the vortex field, assuming
zero temperature. It is well known that in 2D the thermal
fluctuations destroy the periodic order of the crystal. The
same must be true for the vortex lattice. It is reasonable
to suppose that nevertheless the energy gap for the charged
excitations survives and the electrons form a special electron
liquid which can have some kind of a plastic flow in the
absence of the crystalline order. The observed Hall current may
be the realization of this flow in the presence of an external
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Figure 3. The dispersion law ε(k) for l = 1, N = 2, K = −1 and
the geometry of one vortex in a square cell. The enlarged Brillouin
cell corresponds to the real-lattice cell of size 2 × 1 in units of base
periods.

(This figure is in colour only in the electronic version)

electric field. The Hall constant may be determined by the
mean electron density in the domain of this flow as it is in
the IQHE. The domains of the electron localization due to
the impurities present in the sample will induce a Hall plateau
because the electron density in the flow domain is unchanged
if the electron chemical potential corresponds to the energy of
the localized states. The plausibility of this qualitative picture
must be checked by more detailed investigations.
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